Cho a+b+c=0 và a^2+b^2+c^2=1

  -  

I tried lớn solve this problem, và I get $a^4+b^4+c^4 = 2(a^2b^2 + 1)$ but I"m not sure if it"s correct




Bạn đang xem: Cho a+b+c=0 và a^2+b^2+c^2=1

*

$egingroup$ it would be better if you can write how did you get that part, then some body can trace errors (if there are any)... $endgroup$
Given $a+b+c = 0$ and $(a^2+b^2+c^2) = 1$, Now $(a^2+b^2+c^2)^2 = 1^2 = 1$

$(a^4+b^4+c^4)+2(a^2b^2+b^2c^2+c^2a^2) = 1.................(1)$

and from $(a+b+c)^2 = 0$,

we get $displaystyle 1+2(ab+bc+ca) = 0Rightarrow (ab+bc+ca) = -frac12$

again squaring both side , we get $displaystyle (ab+bc+ca)^2 = frac14$

$displaystyle (a^2b^2+b^2c^2+c^2a^2)+2abc(a+b+c) = frac14Rightarrow (a^2b^2+b^2c^2+c^2a^2) = frac14$

So put in eqn.... $(1)$ , we get

$displaystyle (a^4+b^4+c^4)+2cdot frac14 = 1Rightarrow (a^4+b^4+c^4) = frac12$


giới thiệu
Cite
Follow
answered Oct 13, 2013 at 8:38
*

juantheronjuantheron
50.8k1616 gold badges8787 silver badges231231 bronze badges
$endgroup$
1
địa chỉ cửa hàng a bình luận |
3
$egingroup$
$$a+b+c=0Rightarrow c=-(a+b)$$$$1=a^2+b^2+(a+b)^2=2a^2+2ab+2b^2=2(a^2+ab+b^2)Rightarrow a^2+ab+b^2=frac12$$$$eginalign*a^4+b^4+c^4 &= a^4+b^4+(a^4+4a^3b+6a^2b^2+4ab^3+b^4)\&= 2(a^4+2a^3b+3a^2b^2+2ab^3+b^4)\&= 2(a^2(a^2+ab+b^2)+b^2(a^2+ab+b^2)+ab(a^2+ab+b^2))\&= a^2+ab+b^2=frac12endalign*$$


chia sẻ
Cite
Follow
answered Oct 13, 2013 at 8:43
*

Dennis GulkoDennis Gulko
15.3k11 gold badge3535 silver badges5757 bronze badges
$endgroup$
địa chỉ cửa hàng a bình luận |
0
$egingroup$
Given a+b+c=0a+b+c=0 and (a2+b2+c2)=1(a2+b2+c2)=1, Now (a2+b2+c2)2=12=1(a2+b2+c2)2=12=1(a4+b4+c4)+2(a2b2+b2c2+c2a2)=1.................(1)(a4+b4+c4)+2(a2b2+b2c2+c2a2)=1.................(1)and from (a+b+c)2=0(a+b+c)2=0,

we get 1+2(ab+bc+ca)=0⇒(ab+bc+ca)=−121+2(ab+bc+ca)=0⇒(ab+bc+ca)=−12again squaring both side , we get (ab+bc+ca)2=14(ab+bc+ca)2=14(a2b2+b2c2+c2a2)+2abc(a+b+c)=14⇒(a2b2+b2c2+c2a2)=14(a2b2+b2c2+c2a2)+2abc(a+b+c)=14⇒(a2b2+b2c2+c2a2)=14So put in eqn.... (1)(1) , we get

(a4+b4+c4)+2⋅14=1⇒(a4+b4+c4)=12


nội dung
Cite
Follow
answered Apr 18, năm 2016 at 14:15
*

Aman sengarAman sengar
1
$endgroup$
1


Xem thêm: Hãy Tả Ngôi Trường Thân Yêu Đã Gắn Bó Với Em Trong Nhiều Năm Qua

add a comment |

You must log in to lớn answer this question.


Not the answer you're looking for? Browse other questions tagged .
Featured on Meta
Linked
19
Finding the fraction $fraca^5+b^5+c^5+d^5a^6+b^6+c^6+d^6$ when knowing the sums $a+b+c+d$ to $a^4+b^4+c^4+d^4$
12
$ a+b+c=0, a^2+b^2+c^2=1$ implies $ a^4+b^4+c^4=frac12$
Related
2
Confusion: I can solve rate problem using "1 pool per $a$ hours", but not "$a$ hours per pool".
1
Method for solving the equation $3 + 5x^1/2 = 2x$?
0
Riddle khổng lồ solve. Grouping of integers.
0
What does it mean khổng lồ be equal?
0
2 degree polynomial problem
2
What type of equation is this called?
1
If $log_ax=3$ and $log_bx=4$, then what is $log_abx$?
2
Solve this system of equations for real numbers
3
Find $b_32$ if $prod_n=1^32(1-z^n)^b_nequiv 1-2z pmodz^33$ and $b_ninpgdtxhoangmai.edu.vnbbZ^+$
Hot Network Questions more hot questions

Question feed
Subscribe to RSS
Question feed to lớn subscribe to this RSS feed, copy và paste this URL into your RSS reader.


*

pgdtxhoangmai.edu.vnematics
Company
Stack Exchange Network


Xem thêm: Hướng Dẫn Soạn Bài Kiểm Tra Phần Văn Lớp 7, Soạn Bài Kiểm Tra Phần Văn

Site design / hình ảnh © 2023 Stack Exchange Inc; user contributions licensed under CC BY-SA. Rev2023.4.6.43381


Your privacy

By clicking “Accept all cookies”, you agree Stack Exchange can store cookies on your device & disclose information in accordance with our Cookie Policy.