Prove That A^2+B^2+C^2

This is my proof. I"m not sure if it is true but perhaps someone would tell me yes or (no & why).

Since $(a^2+b^2), (b^2+c^2), (c^2+a^2)$ are greater than or equal khổng lồ zero, then $(a^2+b^2)(b^2+c^2)(c^2+a^2) geq 0$. I"ll spare you the distribution and say this, $(a^2+b^2)(b^2+c^2)(c^2+a^2) + 8a^2b^2c^2 geq 8a^2b^2c^2$


Bạn đang xem: Prove That A^2+B^2+C^2



$egingroup$ You actually need khổng lồ show $(a^2+b^2)(b^2+c^2)(c^2+a^2)geq 8a^2b^2c^2$... I bởi not understvà why would $(a^2+b^2)(b^2+c^2)(c^2+a^2) + 8a^2b^2c^2 geq 8a^2b^2c^2$ imply $(a^2+b^2)(b^2+c^2)(c^2+a^2)geq 8a^2b^2c^2$ $endgroup$–user87543 Dec 17 "13 at 2:21
AndresCaicebởi vì hint.... you need to apply that thrice.... Good luck! $endgroup$–user87543 Dec 17 "13 at 2:24
rewriting what andres said : $(a^2+b^2)geq2ab,(b^2+c^2)geq2bc,(c^2+a^2)geq2ca$.

therefore $(a^2+b^2)(b^2+c^2)(c^2+a^2) geq (2ab)(2bc)(2ca) = 8a^2 b^2 c^2$


$egingroup$ I have down voted this... It would not be a better idea to lớn write complete solution if some other person has given hints just before ten minutes... you could have sầu given some time... $endgroup$–user87543 Dec 17 "13 at 2:33
$egingroup$ seeing a solution is not that bad... the person who asked the question should see the solution by trying a bit hard with given hint... any way it would be their personal choice... $endgroup$–user87543 Dec 17 "13 at 2:41

Thanks for contributing an answer to Stack Exchange!

Please be sure khổng lồ answer the question. Provide details & mô tả your research!

But avoid

Asking for help, clarification, or responding lớn other answers.Making statements based on opinion; back them up with references or personal experience.

Xem thêm: Tính Chất Đường Trung Trực Của Đoạn Thẳng, Tính Chất Đường Trung Trực Của Một Đoạn Thẳng

Use lớn format equations. reference.

Xem thêm: Lý Thuyết Về Lũy Thừa Của Một Số Hữu Tỉ Lop 7 Bài 5: Lũy Thừa Của Một Số Hữu Tỉ

To learn more, see our tips on writing great answers.

Post Your Answer Discard

By clicking “Post Your Answer”, you agree to lớn our terms of service, privacy policy and cookie policy

Not the answer you're looking for? Browse other questions tagged algebra-precalculus or ask your own question.


$forall x,y,z,, (xgeq y wedge z>u)vee (x>ywedge zgeq u)Rightarrow xz>yu$ is true for all natural numbers? Even zero?

site kiến thiết / hình ảnh © 2021 Stachồng Exchange Inc; user contributions licensed under cc by-sa. rev2021.5.20.39353

Your privacy

By clicking “Accept all cookies”, you agree Stachồng Exchange can store cookies on your device & discthua trận information in accordance with our Cookie Policy.